Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michael R. Probert, ${ }^{\text {a }}$ David J. Watkin, ${ }^{\text {a }}$ Alistair J. Stewart, ${ }^{\text {b }}$ Richard Storer ${ }^{\text {b }}$ and George W. J. Fleet ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, ${ }^{\mathbf{b}}$ Idenix Pharmaceuticals, 60 Hampshire Street, Cambridge, MA 02139, USA, and ${ }^{\mathbf{c}}$ Department of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
Correspondence e-mail:
david.watkin@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study
$T=190 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.050$
$w R$ factor $=0.097$
Data-to-parameter ratio $=18.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

($2 R, 3 R, 4 R$)-Methyl 2-bromo-3,4-dihydroxy-3,4-O-isopropylidenetetrahydrofuran-2-carboxylate

The relative configuration of the quaternary C atom in the title bromide, $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrO}_{5}$, prepared by bromination of the parent ester, has been determined by X-ray crystallographic analysis; the absolute configuration is known from the synthesis.

Comment

The bromination of tetrahydrofuran (THF) carboxylic acid esters to give α-bromoesters (Smith et al., 1999) is a key step in the synthesis of anomeric α-sugar amino acids (Estevez, Estevez et al., 1994; Estevez, Ardron et al., 1994). Such intermediates have also been used in the synthesis of biologically active spirohydantoins, such as the herbicide hydantocidin (3) (Fairbanks \& Fleet, 1995; Fairbanks et al. 1993) and a powerful glycogen phosphorylase inhibitor (4) (Bichard et al., 1995; Krulle et al., 1997).

In a programme directed towards the synthesis of novel nucleosides of erythrose bearing a carbon substituent at the anomeric position, the protected THF ester (2) (Sanjayan et al., 2003) was treated with N-bromosuccinimide in trichloroethane in the presence of benzoyl peroxide; a single crystalline bromide was formed in 72% isolated yield. There is no reliable spectroscopic technique available in this case to allow the assignment of configuration of the quaternary C atom; X-ray crystallography firmly established the structure of the bromide as the β-anomer (1). The absolute configuration of (1) is determined by the use of D-ribose as the starting material for the synthesis.

The slightly large displacement parameters for atoms Br 1 , O3, O7, O9, C14 and C15 could be explained in terms of flexing of the two five-membered rings. Concerted rocking of the whole molecule is unlikely ($R_{\text {TLS }}=0.334$). The crystal packing is unexceptional, apart from a short $\mathrm{Br} 1 \cdots \mathrm{H} 152^{\mathrm{i}}$ contact of $2.92 \AA$ [symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$].

Experimental

The title compound was crystallized from ethyl acetate/hexane. Full details of the synthesis will be published separately (Stewart et al., 2005).

Received 21 April 2005
Accepted 5 May 2005
Online 14 May 2005

(4)

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and H atoms with arbitrary radii.

Packing diagram of the title structure, viewed parallel to the a axis. The short $\mathrm{Br} 1 \cdots \mathrm{H} 152^{\mathrm{i}}$ contact [symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$] is shown as a dotted line.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrO}_{5}$

$M_{r}=281.10$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.6195$ (2) A
$b=10.4127$ (3) \AA
$c=16.3294$ (7) \AA
$V=1125.53(7) \AA^{3}$
$Z=4$
$D_{x}=1.659 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.30, T_{\text {max }}=0.69$
8664 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 1434 reflections
$\theta=5-27^{\circ}$
$\mu=3.65 \mathrm{~mm}^{-1}$
$T=190 \mathrm{~K}$
Plate, colourless
$0.40 \times 0.30 \times 0.10 \mathrm{~mm}$

2490 independent reflections
2490 reflections with $I>-3 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-13 \rightarrow 13$
$l=-20 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.097$
$S=0.97$
2490 reflections
137 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F^{2}\right)+0.02+2.65 P\right] \\
& \text { where } P=\left[\max \left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right] / 3 \\
& (\Delta / \sigma)_{\max }=0.005 \\
& \Delta \rho_{\max }=0.63 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.62 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack }(1983), \\
& \quad 902 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.049(17)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 2$	$2.007(4)$	$\mathrm{C} 6-\mathrm{O} 7$	$1.409(5)$
$\mathrm{C} 2-\mathrm{O} 3$	$1.368(4)$	$\mathrm{O} 7-\mathrm{C} 8$	$1.430(5)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.530(5)$	$\mathrm{C} 8-\mathrm{O} 9$	$1.417(5)$
$\mathrm{C} 2-\mathrm{C} 10$	$1.517(5)$	$\mathrm{C} 8-\mathrm{C} 14$	$1.483(6)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.451(5)$	$\mathrm{C} 8-\mathrm{C} 15$	$1.491(7)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.503(6)$	$\mathrm{C} 10-\mathrm{O} 11$	$1.189(5)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.530(6)$	$\mathrm{C} 10-\mathrm{O} 12$	$1.330(5)$
$\mathrm{C} 5-\mathrm{O} 9$	$1.433(5)$	$\mathrm{O} 12-\mathrm{C} 13$	$1.444(5)$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{O} 3$	$109.4(2)$	$\mathrm{C} 2-\mathrm{C} 6-\mathrm{O} 7$	$108.3(3)$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 6$	$107.9(3)$	$\mathrm{C} 6-\mathrm{O} 7-\mathrm{C} 8$	$109.8(3)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 6$	$107.3(3)$	$\mathrm{O} 7-\mathrm{C} 8-\mathrm{O} 9$	$106.1(3)$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 10$	$106.1(2)$	$\mathrm{O} 7-\mathrm{C} 8-\mathrm{C} 14$	$109.7(4)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 10$	$109.6(3)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 14$	$112.2(4)$
$\mathrm{C} 6-\mathrm{C} 2-\mathrm{C} 10$	$116.3(3)$	$\mathrm{O} 7-\mathrm{C} 8-\mathrm{C} 15$	$109.0(4)$
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 4$	$106.5(3)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 15$	$107.1(4)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	$104.7(3)$	$\mathrm{C} 14-\mathrm{C} 8-\mathrm{C} 15$	$112.5(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$105.0(3)$	$\mathrm{C} 5-\mathrm{O} 9-\mathrm{C} 8$	$108.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 9$	$107.6(4)$	$\mathrm{C} 2-\mathrm{C} 10-\mathrm{O} 11$	$124.6(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{O} 9$	$105.3(3)$	$\mathrm{C} 2-\mathrm{C} 10-\mathrm{O} 12$	$110.3(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 2$	$102.8(3)$	$\mathrm{O} 11-\mathrm{C} 10-\mathrm{O} 12$	$125.0(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 7$	$105.1(3)$	$\mathrm{C} 10-\mathrm{O} 12-\mathrm{C} 13$	$116.4(3)$

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry ($\mathrm{C}-\mathrm{H}$ in the range $0.93-98 \AA$), with $U_{\text {iso }}(\mathrm{H})$ in the range $1.2-1.5$ times $U_{\text {eq }}(\mathrm{C})$, after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $D E N Z O / S C A L E P A C K$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bichard, C. J. F., Mitchell, E. P., Wormald, M. R., Watson, K. A., Johnson, L. N., Zographos, S. E., Koutra, D. D., Oikonomakos, N. G. \& Fleet, G. W. J. (1995). Tetrahedron Lett. 36, 2145-2148.

Estevez, J. C., Ardron, H., Wormald, M. R., Brown, D. \& Fleet, G. W. J. (1994). Tetrahedron Lett. 35, 8889-8890.
Estevez, J. C., Estevez, R. J., Ardron, H., Wormald, M. R., Brown, D. \& Fleet, G. W. J. (1994). Tetrahedron Lett. 35, 8885-8888.

Fairbanks, A. J., Ford, P. S., Watkin, D. J. \& Fleet, G. W. J. (1993). Tetrahedron Lett. 34, 3327-3330.
Fairbanks, A. J. \& Fleet, G. W. J. (1995). Tetrahedron, 51, 3881-3894.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Krulle, T. M., de la Fuente, C., Watson, K. A., Gregoriou, M., Johnson, L. N., Tsitsanou, K. E., Zographos, S. E., Oikonomakos, N. G. \& Fleet, G. W. J. (1997). Synlett, pp. 211-213.

organic papers

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sanjayan, G. J., Stewart, A. J., Hachisu, S., Gonzalez, R., Watterson, M. P. \& Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5847-5852

Smith, M. D., Long, D. D., Martin, A,, Campbell, N., Bleriot, Y. \& Fleet, G. W. J. (1999). Synlett, pp. 1151-1153.

Stewart, A. J., Storer, R., Watkin, D. J. \& Fleet, G. W. J. (2005). Tetrahedron Asymmetry. In preparation
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

